Array-based Discovery of Aptamer Pairs
نویسندگان
چکیده
Affinity reagent pairs that recognize distinct epitopes on a target protein can greatly improve the sensitivity and specificity of molecular detection. Importantly, such pairs can be conjugated to generate reagents that achieve two-site "bidentate" target recognition, with affinities greatly exceeding either monovalent component. DNA aptamers are especially well-suited for such constructs, because they can be linked via standard synthesis techniques without requiring chemical conjugation. Unfortunately, aptamer pairs are difficult to generate, primarily because conventional selection methods preferentially yield aptamers that recognize a dominant "hot spot" epitope. Our array-based discovery platform for multivalent aptamers (AD-MAP) overcomes this problem to achieve efficient discovery of aptamer pairs. We use microfluidic selection and high-throughput sequencing to obtain an enriched pool of aptamer sequences. Next, we synthesize a custom array based on these sequences, and perform parallel affinity measurements to identify the highest-affinity aptamer for the target protein. We use this aptamer to form complexes that block the primary binding site on the target, and then screen the same array with these complexes to identify aptamers that bind secondary epitopes. We used AD-MAP to discover DNA aptamer pairs that bind distinct sites on human angiopoietin-2 with high affinities, even in undiluted serum. To the best of our knowledge, this is the first work to discover new aptamer pairs using arrays. We subsequently conjugated these aptamers with a flexible linker to construct ultra-high-affinity bidentate reagents, with equilibrium dissociation constants as low as 97 pM: >200-fold better than either component aptamer. Functional studies confirm that both aptamers critically contribute to this ultrahigh affinity, highlighting the promise of such reagents for research and clinical use.
منابع مشابه
Continuation Sheet ) Continuation for Block
Array-based Discovery of Aptamer Pairs Report Title Affinity reagent pairs that recognize distinct epitopes on a target protein can greatly improve the sensitivity and specificity of molecular detection. Importantly, such pairs can be conjugated to generate reagents that achieve twosite “bidentate” target recognition, with affinities greatly exceeding either monovalent component. DNA aptamers a...
متن کاملAptamer evolution for array-based diagnostics.
Closed loop aptameric directed evolution, (CLADE) is a technique enabling simultaneous discovery, evolution, and optimization of aptamers. It was previously demonstrated using a fluorescent protein, and here we extend its applicability with the generation of surface-bound aptamers for targets containing no natural fluorescence. Starting from a random population, in four generations CLADE produc...
متن کاملHighly specific detection of thrombin using an aptamer-based suspension array and the interaction analysis via microscale thermophoresis.
A novel aptamer-based suspension array detection platform was designed for the sensitive, specific and rapid detection of human α-thrombin as a model. Thrombin was first recognized by a 29-mer biotinylated thrombin-binding aptamer (TBA) in solution. Then 15-mer TBA modified magnetic beads (MBs) captured the former TBA-thrombin to form an aptamer-thrombin-aptamer sandwich complex. The median flu...
متن کاملRecent Progress in Nucleic Acid Aptamer-Based Biosensors and Bioassays
As the key constituents of the genetic code, the importance of nucleic acids to life has long been appreciated. Despite being composed of only four structurally similar nucleotides, single-stranded nucleic acids, as in single-stranded DNAs and RNAs, can fold into distinct three-dimensional shapes due to specific intramolecular interactions and carry out functions beyond serving as templates for...
متن کاملSelection strategy to generate aptamer pairs that bind to distinct sites on protein targets.
Many analytical techniques benefit greatly from the use of affinity reagent pairs, wherein each reagent recognizes a discrete binding site on a target. For example, antibody pairs have been widely used to dramatically increase the specificity of enzyme linked immunosorbent assays (ELISA). Nucleic acid-based aptamers offer many advantageous features relative to protein-based affinity reagents, i...
متن کامل